Regional Specific Evidence for Memory-Load Dependent Activity in the Dorsal Subiculum and the Lateral Entorhinal Cortex
نویسندگان
چکیده
The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.
منابع مشابه
Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo.
There has been little electrophysiological examination of the afferent projection from lateral entorhinal cortex to dorsal subiculum. Here we provide evidence that synaptic inputs from lateral entorhinal cortex and CA1 converge onto single dorsal subicular neurons in vivo. Subicular responses to CA1 stimulation consisted of excitation and/or long-duration inhibition. Neurons excited by CA1 acti...
متن کاملHippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat.
Available evidence suggests there is functional differentiation among hippocampal and parahippocampal subregions and along the dorsoventral (septotemporal) axis of the hippocampus. The aim of this study was to characterize and compare the efferent and afferent connections of perirhinal areas 35 and 36, postrhinal cortex, and the lateral and medial entorhinal areas (LEA and MEA) with dorsal and ...
متن کاملTopography of Arc/Arg3.1 mRNA expression in the dorsal and ventral hippocampus induced by recent and remote spatial memory recall: dissociation of CA3 and CA1 activation.
The understanding of the mechanisms of memory retrieval and its deficits, and the detection of memory underlying neuronal plasticity, is greatly impeded by a lack of precise knowledge of the brain circuitry that underlies the functions of memory. The specific roles of anatomically distinct hippocampal subdivisions in recent and long-term memory retention and recall are essentially unknown. To a...
متن کاملConnections between the retrosplenial cortex and the hippocampal formation in the rat: a review.
The retrosplenial cortex is situated at the crossroads between the hippocampal formation and many areas of the neocortex, but few studies have examined the connections between the hippocampal formation and the retrosplenial cortex in detail. Each subdivision of the retrosplenial cortex projects to a discrete terminal field in the hippocampal formation. The retrosplenial dysgranular cortex (Rdg)...
متن کاملNeuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat’s Offspring in Uteroplacental Insufficiency Model
Introduction: Uteroplacental insufficiency (UPI) causes neurodevelopmental deficits affecting the intrauterine growth restricted (IUGR) offspring. This study aimed to analyze the effects of Gallic acid (GA) on memory deficit and brain-derived neurotrophic factor (BDNF) content in entorhinal cortex of UPI rat models. Methods: In this experimental study, 40 pregnant Wistar rats were randomly div...
متن کامل